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ABSTRACT: A [4 þ 2] cycloaddition of R,β-unsaturated
imines and isocyanates catalyzed by a phosphoramidite�
rhodium complex provides pyrimidinones in good yields and
high enantioselectivities.

Pyrimidinones are attractive scaffolds due to their biological
activity1 and their accessibility via multicomponent reactions.

Traditionally, this motif is synthesized via the three-component
Biginelli reaction.2 Improvements on Biginelli’s initial report3

include the use of chiral acids to achieve high enantioselectivities4

and departure from classic components.5

Recently, our group has reported asymmetric syntheses of
nitrogen-containing heterocycles via rhodium catalysis.6,7 In-
spired by Hoberg’s report8 of a nickelacycle generated from an
imine and isocyanate, we envisioned using R,β-unsaturated
imines9 and isocyanates10 to generate pyrimidinones.11 By
employing R,β-unsaturated imines, we sought to change the
typical substitution pattern that accompanies the classic Biginelli
reaction. Herein, we report that a rhodium�phosphoramidite
complex catalyzes the [4 þ 2] cycloaddition between R,β-
unsaturated imines and isocyanates12 to generate pyrimidinones
in good yields and high enantioselectivities.13

We began our investigations by examining nickel catalysts as
per the stoichiometric precedent of Hoberg but found them
ineffective at catalyzing the desired reaction (Table 1, entry 2).
Wilkinson’s catalyst is only marginally effective, but switching to
a Taddol phosphoramidite�rhodium complex provides the
target material in moderate yield and enantioselectivity (entries
3 and 4). After exploring various phosphoramidites, we found L2
generates pyrimidinone 3aa in the highest yield and enantio-
selectivity (entry 5).14

With our optimized catalyst system in hand, we explored the
scope of this reaction (Chart 1). Electron-deficient aryl imines
(3ca) furnish slightly higher yields and selectivities over electron-
rich aryl imines (3ba). Primary alkyl imines generate the highest

enantioselectivities with good yield; a secondary alkyl imine is
also well-tolerated but provides moderately reduced selectivities
(3da). Electron-rich aryl substituents at the 4-position provide
products in good yields and high enantioselectivities, while
electron-deficient aryl substitution leads to higher enantioselec-
tivity with a decrease in yield. Furyl, vinyl, and alkyl substitution
also yields a product, with the latter furnishing lower selectivities
(3ma). An increase in size of the alkyl substituent only leads to
a slight improvement in yield and enantioselectivity (3na).
Primary alkyl isocyanates deliver high yields and enantio-
selectivities.15 Phenyl isocyanate also generates a product, but
the yield and selectivity are lower. This reaction has been
performed on a 4.5 mmol scale using imine 1g and benzyl
isocyanate 2c with 2 mol % catalyst loading, and the yield and
enantioselectivity do not suffer.

We propose the following mechanism (Scheme 1). Initial
coordination of the R,β-unsaturated imine and isocyanate is
followed by oxidative cyclization to generate rhodacycle I, which

Table 1. Catalyst Screena

aConditions: 1 (0.3 mmol), 2 (1.25 equiv), and catalyst in PhMe at 110
�C for 12 h. b Isolated yield. c Enantiomeric excess determined by HPLC
using a chiral stationary phase. dAbsolute configuration assigned by
analogy to (R)-3af (established by X-ray analysis; see SI).
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resembles the nickelacycle isolated byHoberg.8 An η1-η3-η1 shift
forms rhodacycle II that reductively eliminates to furnish the

pyrimidinone and regenerate the catalyst. An alternative mechan-
ism involving a [4 þ 1] cycloaddition between the R,β-unsatu-
rated imine and rhodium can also be envisioned. If a [4 þ 1]
cycloaddition occurs first, the stereocenter would be set before
the isocyanate is incorporated. Variance in enantioselectivities
using different isocyanates suggests that oxidative cyclization of
the imine and isocyanate takes place before the enantio-
determining step.

The pyrimidinones generated from this reaction may serve as
useful chiral building blocks. After the reduction of 3fd, the
resulting bis(4-methoxybenzyl)-tetrahydropyrimidinone can be
deprotected using neat trifluoroacetic acid (eq 1). In the pres-
ence of N-bromosuccinimide and wet dimethylformamide, 3ga
generates the bromohydrin that can be converted to 7 using
boron trifluoride etherate and allyltrimethylsilane (eq 2).5b

In conclusion, we report the synthesis of pyrimidinones from
R,β-unsaturated imines and isocyanates using a rhodium�
phosphoramidite catalyst, affording a substitution pattern com-
plementary to that of Biginelli adducts. This reaction proceeds in
moderate to good yields and high enantioselectivities, and the
products are useful chiral building blocks.
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